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SUMMARY

This paper presents a new approach to MUSCL reconstruction for solving the shallow-water equations
on two-dimensional unstructured meshes. The approach takes advantage of the particular structure of the
shallow-water equations. Indeed, their hyperbolic nature allows the flow variables to be expressed as a
linear combination of the eigenvectors of the system. The particularity of the shallow-water equations
is that the coefficients of this combination only depend upon the water depth. Reconstructing only the
water depth with second-order accuracy and using only a first-order reconstruction for the flow velocity
proves to be as accurate as the classical MUSCL approach. The method also appears to be more robust
in cases with very strong depth gradients such as the propagation of a wave on a dry bed. Since only
one reconstruction is needed (against three reconstructions in the MUSCL approach) the EVR method
is shown to be 1.4–5 times as fast as the classical MUSCL scheme, depending on the computational
application. Copyright q 2006 John Wiley & Sons, Ltd.
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24 S. SOARES FRAZÃO AND V. GUINOT

1. INTRODUCTION

1.1. Motivation of the approach

The shallow-water equations describing the movement of water under the assumption of a hy-
drostatic pressure distribution form a system of hyperbolic equations. When solving those equa-
tions numerically in the context of fast transient flows, the numerical scheme is required to be
shock capturing to be able to represent discontinuities arising from fast changing flow conditions.
Godunov-type schemes, consisting of a finite-volume discretization of the equations written in
integral form (both in space and time), are among the most widely used schemes. In the original
Godunov method [1], the continuous system is discretized using piecewise constant data over each
computational cell, and the numerical mass and momentum fluxes are computed at each time step
across the interfaces between the cells.

A wide range of Godunov-type schemes have been developed for producing accurate numerical
solutions of hyperbolic systems of partial differential equations in one dimension of space (see e.g.
References [2–5] for a presentation of some classical methods). The most widely used approach
is the MUSCL scheme (also called the variable extrapolation method by some authors [4]),
introduced by Van Leer [2, 6] for constructing higher-order methods. It relies on the idea of
modifying the piecewise constant data in the first-order Godunov method [1] into piecewise linear
functions, where the values at the cell interfaces are thus extrapolated values [4]. The extension
of second-order accurate schemes to two dimensions involves the construction of an appropriate
linear representation of the solution within a computational cell, with a subsequent limiting in
order to avoid spurious oscillations in the solution due to the presence of local extrema issued
from the reconstruction process. Some existing techniques for reconstructing and limiting the
local solution gradients are summarized in Reference [7], where a framework is presented for the
construction of multidimensional slope limiting operators for two-dimensional MUSCL-type finite
volume schemes on triangular grids. Note that adaptive limiters have been proposed to improve
the accuracy of the method [8].

In the original approach [2, 6] and in classical applications of the MUSCL approach to non-
linear systems of conservation laws such as the shallow-water equations, the linear reconstruction
process is applied independently to each variable of the system. This involves a high computational
cost to obtain second-order spatial accuracy: for the 2D shallow-water equations, the reconstruc-
tion process must be carried out three times at each time step. Moreover, common methods to
achieve second-order accuracy in time such as the predictor–corrector sequence of Reference [9]
require the characterization and solution of two Riemann problems at each computational time
step.

The method proposed in the present paper is called the Eigenvector-based Reconstruction (EVR)
hereafter. It makes use of the eigenstructure of the shallow-water equations to restrict the number
of operations needed to achieve second-order accuracy. It is inspired by the generalized Riemann
problem (GRP) approach of Ben-Artzi and Falcovitz [10] and Colella and Woodward’s definition
of the Riemann problem in the Eulerian PPM approach [3]. In the GRP approach, second-order
accuracy in time is achieved by computing an averaged numerical flux over the time step, instead
of using a predictor–corrector sequence. However, in these previous methods no use is made of
the eigenstructure of the equations to simplify the computational procedure. The EVR approach
as such was originally used in one-dimensional form for the simulation of two-phase flow in pipes
[11, 12]. The present paper details its application to the solution of the two-dimensional shallow-
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EIGENVECTOR-BASED RECONSTRUCTION 25

water equations in the framework of the MUSCL reconstruction. Note however that the approach
is not specific to the MUSCL reconstruction method and has been shown to be applicable to other
reconstruction techniques (see e.g. References [11–13]). The advantages of the proposed approach
over more classical higher-order reconstruction approaches when applied to the shallow-water
equations are that: (i) reconstructing only the water depth is shown to yield numerical solutions,
the quality of which is not significantly different from that of the classical MUSCL scheme,
(ii) through an appropriate integration in time of the numerical flux over the time step [10, 14],
second-order accuracy in time is achieved in a less expensive way than the classical predictor–
corrector MUSCL approach, thus leading to a significantly faster method, and (iii) the independent
reconstruction of the flow variables carried out in the classical MUSCL approach appears to yield
spurious oscillations and stability problems near wetting or drying fronts, which is not the case
for the EVR method (see Appendix A for an analysis of the problem).

The performance of the EVR method is assessed through comparison with the first-order Go-
dunov scheme and with the MUSCL approach on two test cases. The first one consists of a circular
dam-break problem on a flat bottom, with different ratios between the initial depths inside and
outside the reservoir, respectively. The second test is a dam-break flow in a channel with a 90◦
bend, for which experimental data is available.

The present paper is organized as follows. The governing equations are recalled in Section 1.
Section 2 gives the principles of the reconstruction of variables over unstructured grids and presents
the classical MUSCL approach. Section 3 is devoted to the EVR reconstruction. Section 4 presents
applications and compares the performances of the different approaches and Section 5 provides
concluding remarks.

1.2. Governing equations

Godunov-type schemes aim to solve hyperbolic systems of conservation laws, such as the shallow-
water equations stating mass and momentum conservation of a volume of water, that is systems
of partial differential equations (PDEs) that can be written in the following vector form:

�U
�t

+ �F
�x

+ �G
�y

=S (1)

where U is the conserved variable, F and G are the fluxes in the x and y directions, respectively,
and S represents the source terms. In the case of the shallow-water equations, those vectors read

U=

⎛⎜⎜⎜⎝
h

qx

qy

⎞⎟⎟⎟⎠ , F=

⎛⎜⎜⎜⎝
qx

q2x/h + gh2/2

qxqy/h

⎞⎟⎟⎟⎠
nonumber

G=

⎛⎜⎜⎜⎝
qy

qxqy/h

q2x/h + gh2/2

⎞⎟⎟⎟⎠ , S=

⎛⎜⎜⎜⎝
0

(S0x − S f, x )gh

(S0y − S f, y)gh

⎞⎟⎟⎟⎠
(2)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:23–55
DOI: 10.1002/fld



26 S. SOARES FRAZÃO AND V. GUINOT

where g is the gravitational acceleration, h is the water depth, qx and qy are the unit discharges
in the x and y directions, respectively, S0, x = −�zb/�x and S0, y = −�zb/�y are the source terms
related to the variation of the bed elevation zb in the x and y directions, respectively, and S f, x
and S f, y are the friction source terms in the x and y directions, respectively. The friction terms
are classically computed using Manning’s formula

S f, x = n2M(u2x + u2y)
1/2ux

h4/3

S f, y = n2M(u2x + u2y)
1/2uy

h4/3

(3)

where nM is Manning’s number, ux = qx/h and uy = qy/h are the x and y velocity, respectively.
System (1) can be rewritten in non-conservation form as

�U
�t

+ Ax
�U
�x

+ Ay
�U
�y

=S (4)

with Ax and Ay being the Jacobian matrices of F and G with respect to U

Ax =

⎡⎢⎢⎢⎣
0 1 0

c2 − u2x 2ux 0

−uxuy uy ux

⎤⎥⎥⎥⎦ , Ay =

⎡⎢⎢⎢⎣
0 1 0

−uxuy uy ux

c2 − u2y 0 2uy

⎤⎥⎥⎥⎦ (5)

and where c= (gh)1/2 is the wave celerity. The system is hyperbolic because Ax and Ay have
three distinct, real eigenvalues each. Such eigenvalues express the wave propagation speeds in the
direction of concern. The eigenvalues in the x direction are:

�(1) = ux − c

�(2) = ux

�(3) = ux + c

(6)

1.3. The six steps of Godunov-type schemes

Godunov-type schemes comprise the six following steps:

(1) Space is discretized into computational cells (Figure 1), also called volumes, over which
the average value of the solution U is to be computed at each time step. The average value
of U over the cell i at the time level n is denoted by Un

i .
(2) U is reconstructed in space over the computational cells. The reconstructed profile over

the cell i at the time level n is denoted by Ũn
i (x, y). This function is determined from the

average value Un
i in the current cell and the averages Un

j in the neighbouring cells. The

way to obtain Ũn
i (x, y) will be detailed in Section 3.
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Ai

n
iU cell j (Ωj) 

ξ η

Interface (i, j )

cell i (Ωi)

ni, j

wi, j

Figure 1. Definition sketch of the geometry and variables.

(3) At the interfaces between the computational cells, the discontinuities generated by the
reconstructed profiles form GRPs. These GRPs are converted into equivalent Riemann
problems (ERPs) in the direction normal to the interfaces.

(4) Solving the ERP at each interface provides the value of U (and therefore F and G) at
the interfaces between the cells. The ERPs can be solved using standard, one-dimensional
Riemann solvers.

(5) The solution is advanced in time using the balance equation

Un+1
i =Un

i − �t

Ai

∑
j∈N (i)

(Fn+1/2
i, j n(x)

i, j + Gn+1/2
i, j n(y)

i, j )wi, j (7)

where Ai is the area of the cell i , Fn+1/2
i, j and Gn+1/2

i, j are the average values between the
time levels n and n + 1 of F and G across the interface between the cells i and j , N (i) is
the set of the neighbour cells of i , n(x)

i, j , n
(y)
i, j are the x and y components of the normal unit

vector of the interface (i, j) between the cells i and j , �t is the computational time step
and wi, j is the width of the interface (i, j). The normal unit vector ni, j is oriented from
the cell i to the cell j .

(6) The source term S is incorporated to the solution. This can be done using time splitting
[15] or by discretizing the source term directly at the time level n.

2. RECONSTRUCTION OF VARIABLES OVER UNSTRUCTURED GRIDS

2.1. The reconstruction process

The performance of Godunov-type schemes is largely conditioned by the reconstruction process
to obtain Ũn

i (x, y), corresponding to the second step of Godunov-type schemes. In the original
Godunov scheme [1] Ũn

i (x, y) is taken constant, equal to Un
i . In higher-order schemes, Ũn

i (x, y)
is assumed to be a linear or higher-order function of space (see e.g. References [16, 17] for linear
reconstructions on Cartesian grids and Reference [7] for linear reconstructions on triangular grids).
The reconstructed profile considered here is a linear profile, i.e. a plane, leading to second-order
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28 S. SOARES FRAZÃO AND V. GUINOT

spatial accuracy of the results. Second-order accuracy in time is then achieved through the time
integration procedure.

The reconstructed profile over the cell i at the time level n, denoted by Ũn
i (x, y), must satisfy

the following constraints:

(1) The average value of Ũn
i (x, y) over the cell i must be equal to the cell average Un

i [4]
1

Ai

∫
�i

Ũn
i (x, y) dx dy =Un

i (8)

where �i denotes the set of points of the cell i .
(2) The value of Ũn

i (x, y) at the centre (x j , y j ) of the cells j neighbour to cell i should be as
close as possible to the neighbour cell average

Ũn
i (x j , y j )

∼=Un
j ∀ j ∈ N (i) (9)

where N (i) denotes the set of cells neighbour to cell i .

Equations (8) and (9) yield Ei +1 constraints on the function Ũn
i (x, y), where Ei is the number

of neighbours of the cell i . This leads to four conditions for a triangular cell and to five conditions
for a quadrangular cell. In most cases all these conditions cannot be satisfied simultaneously and
residual minimisation procedures, such as least-square fitting, must be used to adjust the parameters
of the reconstruction.

In classical MUSCL approach, this procedure, described in Section 2.2, is applied to each
component of the conserved variable U, thus to h, qx and qy . The way the classical MUSCL
approach was adapted to unstructured grids is presented in Section 2.4. The proposed approach,
presented in Section 3, allows a profile to be reconstructed for each of the conserved variables,
while only based on the linear reconstruction of the water depth h.

2.2. Two-dimensional linear reconstruction

The principle of the two-dimensional linear reconstruction is given for a scalar variable U . When
applied to a vector variable, the reconstruction must be carried out independently for each compo-
nent of the vector variable. A two-dimensional linear reconstruction Ũ n

i of a given scalar variable
U on a given cell i is sought. The cell may have any arbitrary number of edges. The reconstruction
Ũ n
i of U in the cell i at the time level n takes the form

Ũ n
i (x, y) = (x − xi )ai + (y − yi )bi + ci (10)

where xi and yi are the co-ordinates of the gravity centre of the cell i . The reconstructed profile
Ũ n
i is determined from the known average value Un

i of U on the cell at the time level n and
from the known average values Un

j in each of the neighbouring cells. It is now explained how to

determine such a reconstructed profile Ũ n
i that satisfies constraints (8) and (9).

Substituting Equation (10) into Equation (8) leads to the following condition on ci :

ci =Un
i (11)

In order to determine the slopes of the linear profile over the cell, the closest plane to the known
Un

j is determined by minimizing the square of the distance between the known and reconstructed
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EIGENVECTOR-BASED RECONSTRUCTION 29

values. This is done by minimizing the total residual function Ri defined as

Ri (ai , bi ) = ∑
j∈N (i)

[Ũ n
i (x j , y j ) −Un

j ]2 (12)

where N (i) is the set of cells neighbour to cell i . The optimal values of ai and bi are
those for which the derivatives �Ri/�ai and �Ri/�bi are equal to zero. Substituting Equations
(10)–(11) into Equation (12) and differentiating Ri with respect to ai and bi yields the
following conditions:∑

j∈N (i)
(x j − xi )

2ai + (x j − xi )(y j − yi )bi + (x j − xi )(U
n
i −Un

j ) = 0

∑
j∈N (i)

(x j − xi )(y j − yi )ai + (y j − yi )
2bi + (y j − yi )(U

n
i −Un

j ) = 0
(13)

This 2× 2 system can be easily solved for ai and bi .

2.3. Slope limiting

A slope limiting procedure is needed in order to ensure that the reconstructed profiles do not
induce any undershoots or overshoots of the solution. Various limiters for the solution of one-
or two-dimensional equations with different levels of complexity are available from the literature
(see e.g. References [4–9]). The present slope limiter is adapted from the monotonized central-
difference limiter of Van Leer [2, 6], stating that, in one-dimensional problems, the slope �i in cell
i for a variable U is given by

�ni =minmod

(
Un
i+1 −Un

i−1

2�x
, �

Un
i −Un

i−1

�x
, �

Un
i+1 −Un

i

�x

)
(14)

with � = 2. This method compares the central difference with twice the one-sided slope to either
side.

In the present case, a linear profile is reconstructed over each cell in the unstructured grid
(typically, triangular cells), as described in the previous section. This linear profile corresponds to
a plane as close as possible to the average values in the neighbouring cells. It can thus be seen as
a kind of central difference. The slopes of this reconstructed profile are then compared to the local
slopes across each cell interface multiplied by a factor �, as is done in Equation (14). As suggested
in Reference [7], it is chosen to avoid local extrema at the cell-edge midpoint rather than avoiding
local extrema at the cell nodes in order to obtain a less restrictive limiter. The limiting procedure
is detailed below.

To limit the slopes of the reconstructed profile in cell i , they are multiplied by a factor �, with

0� � � 1 (15)

Note that it is chosen to reduce the slopes in the x and y directions by the same factor because this
keeps the direction of the slope vector unchanged. The factor � is obtained as follows, for example
when applying the limiting procedure to the reconstructed profile Ũi in cell i , at the interface with
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30 S. SOARES FRAZÃO AND V. GUINOT

cell j . The limiter factor �i, j is calculated as

�i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
Umin
i, j −Un

i

Ũ n
i, j −Un

i

if (Ũ n
i, j −Un

i )<�(Umin
i, j −Un

i )

�
Umax
i, j −Un

i

Ũ n
i, j −Un

i

if (Ũ n
i, j −Un

i )>�(Umax
i, j −Un

i )

1 otherwise

(16)

whereUmin
i, j = min(Ui ,Uj ),Umax

i, j = max(Ui ,Uj ), and Ũ n
i, j is the value extrapolated at the interface

from the reconstructed profile Ũi . The coefficient � is set to 2 to recover the monotonized central-
difference limiter. More generally, this coefficient can be used to relax (�>1) or constrain (�<1)
the process, which will be useful when looking at the applications presented at the end of this
paper.

2.4. The MUSCL scheme

The MUSCL approach is presented here as it was used for comparison with the proposed
eigenvector-based scheme, detailed in the next section. It consists in an adaptation to unstruc-
tured grids of the scheme developed by Alcrudo and Garcia-Navarro [9] who introduced this
high-resolution method for the two-dimensional shallow-water equations on structured grids. The
key steps are recalled here.

The solution at time n + 1 is obtained by a predictor–corrector sequence. The algorithm is the
following.

(1) Reconstruct the vector variable U over the cells in the computational domain. This yields
the reconstructed profiles Ũn

i (x, y) at the time level n, with discontinuities at each cell
interface.

(2) At each interface (i, j) between the cells i and j , define and solve the following Riemann
problem with left and right statesUL and UR in the coordinate system normal to the interface
(Figure 1) defined as

U(�) =
⎧⎨⎩UL = Ũn

i (�i, j ) for �<�i, j

UR = Ũn
j (�i, j ) for �>�i, j

(17)

where �i, j is the � coordinate of the interface. In the notation above, the cells i and j are
located on the left- and right-hand sides of the interface, respectively. Solving the Riemann
problem at the interface (i, j) yields the predictor fluxes F(P)

i, j and G(P)
i, j in the x and y

directions, respectively.
(3) Use the predictor fluxes over half a time step to obtain updated values Un+1/2

i of U over
the cells

Un+1/2
i =Un

i − �t

2Ai

∑
j∈N (i)

(F(P)
i, j n

(x)
i, j + G(P)

i, j n
(y)
i, j )wi, j (18)
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(4) At each interface (i, j) between the cells i and j , define and solve the Riemann problem
using the updated values

U(�) =
⎧⎨⎩UL = Ũn+1/2

i for �<�i, j

UR = Ũn+1/2
j for �>�i, j

(19)

where the slopes of the reconstructed profiles Ũn+1/2
i and Ũn+1/2

j are taken equal to the
slopes computed during step 1. Solving this Riemann problem at the interface (i, j) yields
the corrector fluxes F(C)

i, j and G(C)
i, j in the x and y directions, respectively.

(5) Use the corrector fluxes to compute the final value of U at the time level n + 1

Un+1
i =Un

i − �t

Ai

∑
j∈N (i)

(F(C)
i, j n

(x)
i, j + G(C)

i, j n
(y)
i, j )wi, j (20)

It should be noted that this procedure involves solving twice a Riemann problem per time step. In
addition, the classical MUSCL reconstruction is carried out separately on each component of the
vector variable U. The proposed approach, in contrast, requires the Riemann problem to be solved
only once and only one component of U to be reconstructed per time step.

3. THE EIGENVECTOR-BASED RECONSTRUCTION (EVR)

The EigenVector-based Reconstruction (EVR) approach can be seen as a variation of the common
MUSCL [2, 4] approach to unstructured grids. This approach is inspired from the GRP method of
Ben-Artzi and Falcovitz [10] and Colella and Woodward in their PPM method [3], but it makes
advantageous use of the eigenstructure of the equations to reduce the computational effort. The
proposed approach has been applied successfully to the solution of the one-dimensional equations
for two-phase flow in pipes [11, 12] and the Saint-Venant equations [13, 14]. In the original GRP
method, as well as in the EVR method, second-order accuracy is achieved by averaging the fluxes
in time over the time step �t . The motivation for developing the EVR approach was twofold: (i)
in the particular case of the shallow-water equations, thanks to the eigenstructure of the equations,
the reconstruction of only one flow variable (namely the water depth) is needed instead of three
as in the classical MUSCL approach, and (ii) the classical MUSCL approach may yield stability
problems near wetting or drying fronts when applied to the shallow-water equations (see Section
4). As shown in Appendix A, one of the reasons for this is that the original MUSCL approach
uses independent reconstructions for the water depths and the unit discharges. The limiting process
may therefore act independently on the water depth and on the unit discharge profiles. This has the
particular consequence that very large (if not infinite) reconstructed velocities may be obtained in
the neighbourhood of wetting or drying fronts. Reducing the computation time step may have the
counter-intuitive effect of making the problem more acute, as shown in Appendix A. The analysis
made in Appendix A leads to conclude that the unit discharges should not be reconstructed
independently from the water depth near wetting and drying fronts. In the EVR approach, the
reconstruction of the x and y unit discharges is derived directly from that of the water depth,
avoiding in such a way the problem of independent reconstruction leading to artificially high
velocities near the wetting front.
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32 S. SOARES FRAZÃO AND V. GUINOT

3.1. Governing equations in the base of eigenvectors

Since the present subsection focuses on the solution of the hyperbolic part of Equation (1), the
source term S will be omitted in what follows. The fluxes at each interface are computed by solving
Equation (11) in the local co-ordinate system (�, �) attached to the interface (i, j). Therefore,
use is made of the rotational invariance property of Equation (11), stating that (demonstration in
Reference [4])

cos ��F(U) + sin ��G(U)=T−1
� F(T�U) (21)

where � and � are the coordinates in the direction of the normal and tangent unit vector,
respectively, making an angle �� with the x direction. Using Equation (21), following
Reference [4], Equation (11) in the local co-ordinates system becomes the so-called augmented
one-dimensional system

�V
�t

+ �F�

��
= 0 (22)

where V=T�U and F� =F(T�U) are the transformed expressions of U, F and G in the local
coordinate system.

The principle of the EVR method is the following. Equation (22) can be written in characteristic
form as

�V
�t

+ A
�V
��

= 0 (23)

where A= �F�/�V is the Jacobian matrix of F� with respect to V

A=

⎡⎢⎢⎣
0 1 0

c2 − u2 2u 0

−uv v u

⎤⎥⎥⎦ (24)

where u and v are the velocity components in the directions normal and tangent to the interface,
respectively. The matrix A has the following eigenvalues and associated right eigenvectors, denoted
by �(p) and K(p), respectively. They satisfy the following equality:

AK(p) = �(p)K(p) (25)

Straightforward algebra leads to the following expressions for �(p) and K(p):

�(1) = u − c, �(2) = u, �(3) = u + c

K(1) =

⎡⎢⎢⎣
1

u − c

v

⎤⎥⎥⎦ , K(2) =

⎡⎢⎢⎣
0

0

1

⎤⎥⎥⎦ , K(3) =

⎡⎢⎢⎣
1

u + c

v

⎤⎥⎥⎦ (26)

The vector V is written as a combination of the eigenvectors of the characteristic matrix A:

V(�, �, t) =∑
p

�(p)(�, �, t)K(p) =Ka(�, �, t) (27)
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where �(p) is the coefficient (called the wave strength) of the combination associated to the pth
wave, K is the matrix formed by the eigenvectors K(p) and a is the vector formed by the wave
strengths �(p). Note that, given Equations (26) and (27), the wave strengths for the shallow-water
equations are given by

�(1) = h/2

�(2) = 0

�(3) = h/2

(28)

Substituting Equation (27) into Equation (24) yields

�
�t
Ka+ A

�
��

Ka= 0 (29)

Left-multiplying Equation (29) by the matrix K−1 leads to

K−1 �
�t
Ka+ K−1A

�
��

Ka= 0 (30)

In the computational cell i , A is approximated by the constant matrix An
i and K is approximated

by the constant matrix Kn
i that can thus be taken out of the differentiation operators to give

Kn−1

i Kn
i

�
�t
a+ Kn−1

i An
i K

n
i

�
��
a= 0 (31)

This approximation of the original vector equation is nothing but a local linearization of the
problem in the cell i . Noticing that the matrix product Kn−1

i An
i K

n
i is equal to the diagonal matrix

Kni formed by the eigenvalues of An
i , Equation (31) becomes

�a
�t

+ Kni
�a
��

= 0 (32)

Equation (32) is equivalent to the following set of differential relationships:

d�(p)

dt
= 0 along

d�

dt
= �(p),n

i (33)

where �(p),n
i is the pth eigenvalue of An

i .
Equations (33) that state the invariance of the wave strengths along the characteristic lines are

called the compatibility equations along these characteristic lines.

3.2. Computation of the intercell fluxes

Assuming that linear reconstructed profiles Ũi are available in each cell, those form GRPs at each
cell interface. The evolution in time of the cell average Un+1

i is computed according to the balance

equation (7), in which Fn+1/2
i, j and Gn+1/2

i, j are the average values of the x and y fluxes across the
interface (i, j) between the time levels n and n+1. Considering a local co-ordinates system (�, �)
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attached to the interface (i, j), the flux to be computed across the interface is the flux Fn+1/2
	, i, j

in the direction normal to the interface, according to Equation (24). In the original GRP method
[10, 18] this numerical flux is defined as

Fn+1/2
�, i, j =

∫ tn+1

tn

∫ wi, j /2

−wi, j /2
Vi, j (�, �, t) d� dt ≈F(Vi, j (0, 0, t

n+1/2)) (34)

where wi, j is the length of the interface and Vi, j (�, �, t) is the solution of the GRP between
two reconstructed states Ũi and Ũ j on the left and right side of the interface, respectively. The
time-averaged flux is thus obtained from Vi, j (0, 0, tn+1/2) via a mid-point rule approximation.
However, such a method implies to compute the exact solution of the GRP, which is complicated
in practice.

The method proposed here is inspired from a modification of the GRP method. At each cell
interface, the GRP are replaced by ERPs that are solved like any classical one-dimensional Rie-
mann problem. In the present applications, a two rarefaction wave Riemann solver was used (see
Reference [14] for a detailed description). The numerical fluxes are defined as

Fn+1/2
�, i, j =F(Vn+1/2

i, j ) (35)

where Vn+1/2
i, j is the solution of the ERP between two constant, time-averaged, states Vn+1/2

i, j,L and

Vn+1/2
i, j,R on the left and right side of the interface, respectively. How to define those constant states

will be detailed in the next section.
It must be noted that numerical fluxes computed using Equations (34) or (35) by means of

a time-averaged value Vn+1/2
i, j is an alternative to the predictor–corrector sequence used in the

MUSCL approach to obtain a second-order accurate scheme. It has the advantage that it provides
a time-averaged flux across the interface. Although this expression might seem complicated to
evaluate in practice, it will be shown in the next sections that Equation (28) allows the calculations
to be simplified to a large extent. The left and right constant states Vn+1/2

i, j,L and Vn+1/2
i, j,R are defined

as

Vn+1/2
i, j,L = 1

wi, j�t

∫ tn+1

tn

∫ wi, j /2

−wi, j /2
Vi, j,L(0, �, t) d� dt

Vn+1/2
i, j,R = 1

wi, j�t

∫ tn+1

tn

∫ wi, j /2

−wi, j /2
Vi, j,R(0, �, t) d� dt

(36)

Making use of Equation (36) and considering a local linear problem in each cell, in such a way
that the eigenvectors K(p) can be replaced by their (constant) averages K(p),n

i and K(p),n
j over the

cells i and j , respectively, Equation (36) can be written as

Vn+1/2
i, j,L = 1

wi, j�t

∫ tn+1

tn

∫ wi, j /2

−wi, j /2

∑
p

�(p)
i, j,L(0, �, t)K(p),n

i d� dt

Vn+1/2
i, j,R = 1

wi, j�t

∫ tn+1

tn

∫ wi, j /2

−wi, j /2

∑
p

�(p)
i, j,R(0,�, t)K(p),n

j d� dt

(37)
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The summation under the integrals in Equation (37) is split into two parts according to the sign
of the eigenvalues �(p). This yields, for the left state Vi, j,L(0, �, t):

Vi, j,L(0,�, t) = ∑
�n(p)
i �0

�(p)
i, j,L(0,�, t)K(p),n

i + ∑
�n(p)
i <0

�(p)
i, j,L(0, �, t)K(p),n

i (38)

Making use of the invariance property expressed by Equation (33), the values of �(p)
i, j,L with positive

eigenvalues at the interface at a time t are deduced from the reconstructed value at time level n
by tracing the pth wave strength backward in time within the cell i :

�(p)
i, j,L(0,�, t) = �̃(p),n

i (�(p), �(p)) for �(p),n
i � 0 (39)

where �(p),n
i is the value of the pth wave celerity over the cell i and (�(p), �(p)) are the coordinates

of the foot of the pth characteristic line issued from the midpoint of the interface (i, j) at time t :

�(p) = � − (t − tn)�(p),n
i

�(p) = �
(40)

The foot of this characteristics should be located within cell i to ensure the stability of the
reconstruction. This condition is fulfilled if the time step is small enough to comply with the
following CFL stability condition: the computational time step must be chosen such that the area
of the domain of dependence of each interface of a given computational cell is smaller than or
equal to the area of the cell (see Appendix B for a stability analysis).

From Equation (39), averaging the wave strength in time over the interface (i, j) as done in Equa-
tion (37) is equivalent to an averaging over the domain of dependence of the interface (Figure 2).

Figure 2. Construction of the left side of the ERP: equivalence of the average in time over �t and the
average over the domain of dependence (D(p)).
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This average value of �(p)
i, j,L is denoted by �(p),n+1/2

i, j,L and is evaluated as

�(p)n+1/2
i, j,L = 1

D(p)

∫
(D(p))

�̃(p),n
i (�, �) d� d� for �(p),n

i � 0 (41)

where D(p) is the area of the domain of dependence (D(p)) of the interface for the pth wave.
Expression (41) is valid for the wave strengths with positive eigenvalues, as they travel towards the
interface and thus influence the solution at the interface. Since the wave strengths with negative
eigenvalues travel in the direction opposite to the interface they do not influence the solution.
Therefore, they can be taken equal to any arbitrary value. The simplest possible solution is to use
the cell average

�(p)
i, j,L(0,�, t) = �(p),n

i for �(p),n
i <0 (42)

From Equations (41) and (42), �(p),n+1/2
i, j,L is given by

�(p),n+1/2
i, j,L =

⎧⎪⎨⎪⎩
1

D(p)

∫
(D(p))

�̃(p),n
i (�, �) d� d� if �(p),n

i � 0

�(p),n
i if �(p),n

i <0

(43)

Reasoning by symmetry for the right-hand side of the interface leads to the following relationships:

�(p),n+1/2
i, j,R =

⎧⎪⎪⎨⎪⎪⎩
1

D(p)

∫
(D(p))

�̃(p),n
j (�, �) d� d� if �(p),n

j � 0

�(p),n
j if �(p),n

j >0

(44)

3.3. A particular case: the linear reconstruction

In the case of a linear reconstruction, the integral in Equation (43) can be evaluated as

�(p),n+1/2
i, j,L = �̃(p),n

i (�C, �C) (45)

where the point C (�C, �C) denotes the centre of the domain of dependence of the characteristic

d�/dt = �(p),n
i , expressed in the local coordinate system (Figure 3). The coordinates of the point

C are thus given by

�C = −�(p),n
i �t/2

�C = 0
(46)

For the shallow-water equations, Equation (28) shows that reconstructing only the water depths
h̃ni and h̃nj allows the left and right states of the ERP to be determined completely.

Finally, according to (37) and making use of (31) and (38), the following expression is obtained
for the left and right states of the ERP:

Vn+1/2
i, j,L = �(1),n+1/2

i, j,L K(1),n
i + �(3),n+1/2

i, j,L K(3),n
i

Vn+1/2
i, j,R = �(1),n+1/2

i, j,R Kn(1)
j + �(3),n+1/2

i, j,R K(3),n
j

(47)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:23–55
DOI: 10.1002/fld



EIGENVECTOR-BASED RECONSTRUCTION 37

ξ

t
ψ

∆t
C

wi,j/2

∆t/2

(D)

( )
t

pn
i ∆λ

( )pn
idtd λξ =

Figure 3. Equivalence between the average of a variable in time (light shaded region) and the average
in space over the domain of dependence (dark shaded region).

3.4. Overview of the algorithm

The algorithm for the EVR reconstruction can be presented in a form similar to the MUSCL
algorithm in Section 2.4.

(1) Reconstruct the wave strengths over the cells in the computational domain. Note
that in the particular case of the shallow-water equations, only the water depth needs
to be reconstructed. The reconstruction yields the profiles h̃ni (x, y) at the time
level n.

(2) At each interface (i, j) between the cells i and j , define and solve the Riemann problem
given by Equations (47) in the coordinate system normal to the interface. Solving the
Riemann problem at the interface (i, j) yields the fluxes Fn+1/2

i, j and Gn+1/2
i, j in the x and y

directions, respectively. Note that in the case of a linear reconstruction the wave strengths
in Equations (47) are obtained using Equations (45)–(46).

(3) Use the fluxes to compute the final value of U at the time level n + 1 according to
Equation (7).

4. APPLICATION EXAMPLES

The performance of the EVR method is illustrated by two test cases, where the proposed recon-
struction method is compared to the first-order Godunov scheme and to the classical MUSCL
approach. In these examples, a two-rarefaction wave solver was used to compute the fluxes
[14]. This solver is based on the fact that the Riemann invariants are a second-order approx-
imation of the jump relationship in terms of the variable jump across a discontinuity [19].
Therefore, the Riemann invariants may be used as a reasonable approximation of the Rankine–
Hugoniot conditions in the computation of approximate solutions of the Riemann problem. This
Riemann-invariants-based scheme has proven its validity in a number of applications including gas
dynamics [20, 21] and pipe flow simulations [22, 23].

The first test consists of a circular dam-break flow on a flat bottom, with different ratios between
the initial water depths inside and outside the reservoir. For this test, a pseudo-analytical solution
can be calculated [5]. The second test case shows a dam-break flow in a channel with a 90◦ bend,
for which experimental measurements are available [24–26].

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:23–55
DOI: 10.1002/fld



38 S. SOARES FRAZÃO AND V. GUINOT
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Figure 4. Perspective (top) and plan view (bottom) of the solution of the circular dam-break problem
computed at t = 1 s (left) and t = 3 s (right) using a grid with 130 000 cells. Contour line spacing: 5 cm.

4.1. Circular dam break

This example consists of the instantaneous breaking of a cylindrical tank (diameter 20 m)
initially filled with 2 m of water at rest. The wave generated by the breaking of the tank
propagates into still water with an initial depth of (i) 1, (ii) 0.5, and (iii) 0 m (dry bed).
Figure 4 illustrates this wave propagation over an initial water depth of 1 m by means of
computations on a very fine mesh of 130 000 elements using the Godunov method. The nu-
merical solution being identical to the theoretical solution obtained from the solution of the
shallow-water equations expressed in a radial co-ordinate system [5], it can be considered as
converged.

�h
�t

+ �
�r

(hvr ) = −hvr

r

�vr

�t
+ �

�r

(
hv2r + 1

2
gh2

)
= −hv2r

r

(48)

where vr is the radial velocity, computed on a fine mesh of 2000 elements.
Figures 5–7 show results computed on a triangular mesh of 5024 cells, using the first-order

Godunov scheme, the common MUSCL scheme and the EVR approach. Figure 5 compares the
results for the propagation over an initial water depth of 1m outside the reservoir. All computations
were run on the same grid, with a maximum CFL number of 0.9 and, for the EVR and MUSCL
schemes, a slope limiting coefficient �= 2. The Godunov scheme excessively smears the results,
while both the EVR and the MUSCL scheme significantly improve the quality of the results. This
is particularly clear in Figure 5(b): the water depth in the initial reservoir has dropped much lower
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(a) (b)

(c) (d)

Figure 5. Comparison of numerical and semi-analytical results for the depth ratio 2 m/1 m
at times: (a) 1; (b) 2; (c) 3 s; and (d) zoom on the results after 3 s.

with the Godunov scheme than with both higher-order methods. Looking at Figures 5(c) and (d),
small oscillations appear in the MUSCL computations.

The results presented in Figure 6 correspond to an initial water depth of 0.5 m outside the
reservoir. Again, all computations were run on the same grid of 5024 triangular cells, with a
maximum CFL number of 0.9 and, for the EVR and MUSCL schemes, a coefficient � in the
limiter equal to 2. The general trend is the same as in Figure 5. Both the EVR and the MUSCL
scheme significantly improve the quality of the results, and small oscillations are observed with
the MUSCL scheme.

Finally, the propagation over an initially dry bed was tested, and the results are presented in
Figure 7. Using the same parameters as in the previous computations (CFL 0.9 and � = 2), the
MUSCL approach failed as illustrated in Figure 7(a). To obtain stable results, it was necessary to
restrain the maximum CFL number to 0.5 and the limiter factor � to 1. However, such restric-
tions were not needed for the EVR method. Figures 7(b)–(d) thus present results computed with
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(a) (b)

(c) (d)

Figure 6. Comparison of numerical and semi-analytical results for the depth
ratio 2 m/0.5 m at times: (a) 1; (b) 2; (c) 2.5; and (d) 3 s.

the Godunov scheme (CFL 0.9), the EVR method (CFL 0.9 and � = 2) and MUSCL (CFL 0.5
and �= 1).

Table I summarizes the computational time needed by each method for the series of test cases.
The Godunov method, where no reconstruction is needed, is of course the faster of the three
methods. Among the second-order schemes, the EVR method uses significantly less computa-
tional time as the MUSCL method. It can also be observed that the MUSCL approach is very
slow in the dry bed case. This is partly due to the fact that the maximum CFL number had to
be reduced to 0.5 instead of 0.9 in order to avoid instabilities. This is also due to the intrin-
sic difficulties attached to the MUSCL approach in the presence of dry beds, as explained in
Appendix A.

4.2. Channel with a 90◦ bend

This example consists of a dam-break flow in an initially dry channel with a 90◦ bend. The
experiments were carried out at the Civil Engineering Department of the Université catholique de
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(a) (b)

(c) (d)

Figure 7. Comparison of numerical and semi-analytical results for the depth ratio 2 m/0 m:
(a) failure of the MUSCL approach at 0.4 s; (b) results at 1 s, with the stabilized MUSCL

scheme (�= 1 and CFL number of 0.5); (c) same results at 2 s; and (d) at 3 s.

Table I. Summary of computational times for the circular dam-break test
cases, with an initial water depth in the tank of 2 m.

Depth of the surrounding water (m)

Approach 1 0.5 0 (dry bed)

Godunov 3.02 3.9 3.36
MUSCL 7.69 8.4 31.8
EVR 5.43 5.82 5.39

Louvain (UCL) in Belgium [24–26]. Figure 8 shows the configuration of the test case. The bed
level in the reservoir is 0.33m lower than the bed level in the channel, inducing an important step
at the location of the dam. The initial water level in the reservoir is 0.25m above the channel bed,

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:23–55
DOI: 10.1002/fld



42 S. SOARES FRAZÃO AND V. GUINOT

Figure 8. Definition sketch for the channel with a 90◦ bend test
case and location of the gauges. Dimensions in metres.

Figure 9. Mesh used for the computations of the 90◦ bend test case: 6888 triangular elements, with
a greater density of triangles in the channel than in the reservoir.

and there is no water in the channel (dry bed). The Manning friction coefficient for the channel
bed was estimated as nM = 0.013. Figure 9 shows the 6888 element computational grid used for
the simulations.

When the supercritical flow induced by the dam break reflects against the bend, its velocity
becomes zero and the water level rises. Then, this water column collapses and a new water front
propagates both in the downstream and upstream reaches. This results in a bore receding to the
reservoir, with the consequence that the flow at the head of the bore becomes subcritical, and
thus much slower than the initial supercritical flow. While the flow is mainly one-dimensional
in the upstream part of the channel, it clearly features two-dimensional wave propagation in
the downstream part, with cross-reflections against the channel side walls. This is illustrated in
Figure 10, showing computed results after 6 s, using the EVR method.
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Figure 10. Structure of the flow after 6 s, computed with the EVR method. Contour line spacing 0.002m.

For the computations using the original MUSCL scheme, it was again needed to reduce the
maximum CFL number to 0.5 to avoid oscillations and instability, and to use � = 1, while for
the Godunov method, the maximum CFL number was set to 0.9 and for the EVR method, the
conditions were a CFL number of 0.9 and � = 2. Figure 11 shows the two-dimensional cross-
waves in the downstream part of the channel after 6 s. The contour lines spacing is 0.002m. Quite
expectedly, the EVR and the MUSCL scheme yield a better resolution of the waves than does the
Godunov method.

Comparisons with the experimental measurements a three different locations are presented in
Figure 12, where the curves show the time evolution of the water depth. Note that all numerical
methods give results very close to each other, except for the Godunov method at some locations.
Figure 12(a) corresponds to a gauge located in the upstream reach. The arrival of the bore issued
from the reflection of the water against the bend is clearly visible at t = 10 s. This arrival time
is slightly delayed in the computations. The global agreement of the computed results with the
experiments is good, but no method is able to reproduce all the undulations of free-surface recorded
by the gauges. Possible sources of differences between the models and the experiments can be
found in inaccuracies in the measurements (although the high reprodcibility of the measurements
was demonstrated in Reference [26]) or inaccuracies in the Manning formula used to express the
bottom friction, as this formula, widely used in the shallow-water framework, was initially derived
for uniform-flow conditions. Moreover, the depth-averaged equations assume a hydrostatic pressure
distribution, which is certainly not the case in the very first instants after the opening of the gate,
and at the moment when the water strongly reflects in the bend. Also, viscosity and turbulent
exchanges are neglected in the equations, which is a common assumption for rapid transient
flows, but could explain some discrepancies. Figure 12(b) shows the results at a gauge located
immediately downstream from the bend and Figure 12(c) shows the results in the downstream
reach. All methods overestimate the water depth there, but this is rather due to the presence of
cross-waves in the downstream reach: if the position of a wave is slightly shifted in the upstream or
downstream direction by the numerical models, this may result in an important difference between
the computed and measured water level at a gauging point.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:23–55
DOI: 10.1002/fld



44 S. SOARES FRAZÃO AND V. GUINOT

(a)

(b)

(c)

Figure 11. Two-dimensional cross-waves in the downstream part of the channel after 6 s computed with
(a) the Godunov method; (b) EVR; and (c) MUSCL scheme. Contour line spacing 0.002 m.

Finally, a summary of the computational times is given in Table II. The EVR method again
shows a significantly lower computational cost than the MUSCL scheme.

5. CONCLUSIONS

A new eigenvector-based reconstruction scheme to obtain second-order accuracy in the resolution
of the shallow-water equations was presented. Taking advantage of the eigenstructure of this non-
linear system of PDEs, the proposed method achieves a similar level of accuracy as the classical
MUSCL approach, at a much lower computational cost. Besides, it is stable even near wetting and
drying fronts, where the MUSCL approach shows some stability problems.
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(a)

(b)

(c)

Figure 12. Comparison of experimental and numerical results at three gauging points:
(a) Gauge No. 2 in the upstream reach; (b) Gauge No. 7 immediately downstream from

the bend; and (c) Gauge No. 9 in the downstream reach.
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Table II. Summary of computational time for the 90◦ bend test case.

Approach Normalized CPU time

Godunov 435.56
MUSCL 1169.15
EVR 646.31

The performance of the EVR method for the shallow-water equations was successfully assessed
by two different types of test cases where the computational solution was compared to a semi-
analytical solution and experimental measurements. The method could be extended to more general
systems of hyperbolic equations, for which the MUSCL scheme is used to obtain higher-order
accuracy.

APPENDIX A: OSCILLATORY CHARACTER OF THE ORIGINAL MUSCL
RECONSTRUCTION NEAR WETTING FRONTS

The purpose of the present appendix is to demonstrate the possible oscillatory character of the
original MUSCL reconstruction when applied to the shallow-water equations in the presence of
wetting fronts. The classical dam break test case on a dry bed is considered. The dam break
problem on a dry bed is defined as the following one-dimensional initial-value problem:

h(x, 0) =
{
hL for x<x0

0 for x>x0

q(x, 0) = 0

(A1)

The analytical solution of this problem is well-known [27]

h(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hL for
x

t
<−cL

1

9g

(
2cL − x

t

)2
for −cL<

x

t
<2cL

0 for
x

t
>2cL

(A2a)

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for
x

t
<−cL

2

3

(
cL + x

t

)
for −cL<

x

t
<2cL

0 for
x

t
>2cL

(A2b)

where cL = (ghL)1/2 is the celerity of the pressure waves on the left-hand side of the initial
discontinuity.
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Figure A1. Dambreak problem on an initially dry bed. Discretization of the analytical solution
in the neighbourhood of the wetting front.

Assume that profile (A2) is used as an initial condition for the MUSCL reconstruction. The
x coordinate is discretized using a constant cell size �x , in such a way that the wetting front,
that moves at a speed 2cL, is located at the interface i + 1/2 between the cells i and i + 1
(Figure A1). Then the abscissas of the cell interfaces are given by

xi−3/2 = 2cLt
n − 2�x

xi−1/2 = 2cLt
n − �x

xi+1/2 = 2cLt
n

xi−3/2 = 2cLt
n + �x

(A3)

where xi−1/2 denotes the interface between the cells i − 1 and i . Keeping in mind that the average
values of h and qx = hu over the cells i − 1, i and i + 1 are defined as

hni = 1

�x

∫ xi+1/2

xi−1/2

h(x, tn) dx (A4a)

qni = 1

�x

∫ xi+1/2

xi−1/2

hu(x, tn) dx (A4b)

Substituting Equations (A2a) and (A3) into Equation (A4a) gives

hni−1 = 7

27g

(
�x

tn

)2

hni = 1

27g

(
�x

tn

)2

hni+1 = 0

(A5)
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Substituting Equations (A2) and (A3) into Equation (A4b) gives

qni−1 = 28cL − 15(�x/tn)

54g

(
�x

tn

)2

qni = 4cL − (�x/tn)

54g

(
�x

tn

)2

qni+1 = 0

(A6)

Applying the MUSCL reconstruction over the cell i leads to the following reconstructed profiles:

h̃ni (x) = hni + (x − xi )h
n
xi

q̃ni (x) = qni + (x − xi )q
n
xi

(A7)

where hnxi and qnxi are the x slopes of the reconstructed profiles for h and q over the cell i and
xi is the x coordinate of the centre of the cell. In the original MUSCL procedure, hnxi and qnxi are
first estimated as

hnxi ≈ hni+1 − hni−1

2�x

qnxi ≈ qni+1 − qni−1

2�x

(A8)

and limited if necessary in such a way that no overshoot or undershoot of the average values over
the cells i − 1 and i + 1 occurs in the reconstructed profiles. Substituting Equations (A5), (A6)
and (A8) into Equation (A7) yields

h̃ni (x) =
(
1 − 7

x − xi
2

)
1

27g

(
�x

tn

)2

(A9a)

q̃ni (x) =
[
4cL − �x

t
− x − xi

2�x

(
28cL − 15

�x

t

)]
1

54g

(
�x

tn

)2

(A9b)

For x = xi+1/2 = xi + �x/2, Equation (A9a) leads to a negative value of h, which indicates that
slope limiting is needed. The slope limiting process leads to redefining hnxi as

hnxi ≈
2

27g

(
�x

tn

)2

(A10)

With this definition of hnxi , Equation (A7) leads to the following value of h for x = xi+1/2:

h̃ni (xi+1/2) = 0 (A11)

Equation (A9b) leads to the following value of q for x = xi+1/2:

q̃ni (xi+1/2) =
(

−12cL + 11
�x

tn

)
1

216g

(
�x

tn

)2

(A12)
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q̃ni (xi+1/2) is strictly positive provided that

�x>
12

11
cLt

n (A13)

This condition is verified at early simulation times, where tn is sufficiently small. This has the
consequence that if small time steps are used, the reconstructed q profile does not need to be
limited at the beginning of the simulation, while the reconstructed h profile does. Therefore, the
reconstructed unit discharge is non-zero in the neighbourhood of the interface i + 1/2, while the
reconstructed water depth is. This leads to an infinite reconstructed velocity at the interface i +1/2
that materializes the location of the wetting front. Reducing the computational time step leads to
reducing the size of the domain of dependence of the interface i +1/2 and yields a larger value of
the average velocity. The momentum flux from the cell i to the cell i + 1 is grossly overestimated,
leading to oscillations in the neighbourhood of the front. Given the non-linear character of the
shallow-water equations, repeating the process a sufficient number of times may lead to instabilities
in the numerical solution. It is not argued that the present analysis covers all the possible causes
for instability in free-surface flow simulations. However, it provides a plausible explanation for
the numerical problems arising near wetting and drying fronts. The present analysis allows the
following recommendations to be drawn: (i) in the neighbourhood of wetting fronts, perform a
reconstruction on the unit discharge only and reconstruct the water levels using the (constant)
average value over the cell, or (ii) use constant reconstructions for both the water depth and the
unit discharge in the neighbourhood of wetting fronts, or (iii) reconstruct only the water depth
and use it as a basis for the reconstruction of the unit discharge everywhere in the model. The
reconstruction method proposed in the present paper follows this third line.

APPENDIX B: STABILITY ANALYSIS

The purpose of the present appendix is to provide a justification to the CFL stability condition on
unstructured triangular grids when an explicit scheme is used. The stability analysis is carried out
for a linear, scalar law. The stability constraint is generalized to hyperbolic systems at the end of
the appendix.

B.1. Analysis for a scalar law

Consider the linear advection equation in two dimensions of space:

�U
�t

+ vx
�U
�x

+ vy
�U
�y

= 0 (B1)

where vx and vy are the (assumed constant for the present analysis) x and y components of
the advection velocity, respectively. Equation (B1) is discretized on a regular, triangular grid
(Figure B1) as a particular case of the vector equation (7)

Un+1
i =Un

i − �t

Ai

3∑
k=1

[vxn(x)
k + vyn

(y)
k ]WkU

n+1/2
i,k (B2)

where Un+1/2
i,k is the value of U at the kth edge of the cell i between the time levels n and n + 1

and Wk is the length of the kth edge. Two cases must be considered in the present analysis:
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x

y

Cell i

Cell 1

Cell 2
Cell 3

W1

W2W3

vx

vy

v

Figure B1. Definition sketch for the stability analysis.

(i) the flow enters the cell i through only one edge and (ii) the flow enters the cell through
two edges.

B.1.1. First case. Assume first that the flow enters the cell through only one edge. Without loss
of generality, it can be assumed that the coordinate system (x, y) has been chosen such that the
flow is entering the cell i through the edge k = 1 and leaves the cell through the edges k = 2 and 3.
Moreover, (x, y) can be adjusted such that the edge k = 1 is parallel to x . If this is not the case,
the coordinate system can be changed and the cells renumbered in such a way that this condition
is satisfied. Then, the values of U at the cell edges are given by

Un+1/2
i,1 =Un

1

Un+1/2
i,2 =Un

i

Un+1/2
i,3 =Un

i

(B3)

where Un
1 is the average value of U in the cell on the other side of the first edge of the cell i .

Substituting Equation (B3) into Equation (B2) gives

Un+1
i =Un

i − �t

Ai
[(vxn(x)

1 + vyn
(y)
1 )W1U

n
1 + (vxn

(x)
2 + vyn

(y)
2 )W2U

n
i

+ (vxn
(x)
3 + vyn

(y)
3 )W3U

n
i ] (B4)

Since the cell is a triangle, the following equality holds:

(vxn
(x)
1 + vyn

(y)
1 )W1 + (vxn

(x)
2 + vyn

(y)
2 )W2 + (vxn

(x)
3 + vyn

(y)
3 )W3 = 0 (B5)
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Consequently, Equation (B4) can be rewritten as

Un+1
i =Un

i − �t

Ai
[(vxn(x)

1 + vyn
(y)
1 )W1(U

n
1 −Un

i )] (B6)

Since the edge k = 1 is assumed parallel to the x direction, Equation (B6) reduces to

Un+1
i =Un

i + vyW1�t

Ai
(Un

1 −Un
i ) (B7)

In the classical linear stability analysis the solution is sought in the form of a harmonic component

Un
i =U0 exp( j�x xi + j�y yi + n
�t) (B8)

where xi and yi are the coordinates of the gravity centre of the cell i , 
 is a complex number with
a real and imaginary part and j is the pure imaginary number ( j2 =−1). The solution is stable
if the modulus of the ratio Un+1

i /Un
i does not exceed unity. This ratio is easily obtained from

Equation (B7)

Un+1
i

Un
i

= 1 + W1vy�t

Ai

(
Un+1
1

Un
i

− 1

)
(B9)

From Equation (B9) it is possible to define a Courant number Cr1 in the direction normal to the
edge k = 1

Cr1 = W1vy�t

Ai
(B10)

This Courant number is the two-dimensional generalization of the Courant number used for one-
dimensional stability analysis. It expresses the ratio of the area of the domain of dependence of
the edge k = 1 to the area of the cell i . Substituting Equation (B10) into Equation (B9) yields

Un+1
i

Un
i

= 1 +
(
Un+1
1

Un
i

− 1

)
Cr1 (B11)

Substituting Equation (B8) into Equation (B11) leads to

Un+1
i

Un
i

= 1 + {exp[(x1 − xi )j�x + (y1 − yi )j�y] − 1}Cr1 (B12)

This equation can be rewritten as

AN = 1 + {exp( j�) − 1}Cr1 (B13)

where the so-called amplification factor AN and the angle � are defined as

AN = Un+1
i

Un
i

� = (x1 − xi )�x + (y1 − yi )�y

(B14)

The location of the amplification factor in the complex plane is a circle of radius Cr1 that is tangent
to the unit circle at the point z = 1 (Figure B2). AN remains inside the unit circle if Cr1 is between
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1

j

Cr1

θ

Figure B2. Location of the amplification factor in the complex plane (bold circle) in the first case.

0 and 1. Note that negative values of Cr1 are meaningless because the velocity vy was assumed
positive at the beginning of this analysis. Therefore, the solution is stable if Cr1 is smaller than
or equal to 1. In other words, a necessary condition for stability is that the area of the domain of
dependence of the edge k = 1 should be smaller than the area of the cell i .

B.1.2. Second case. Consider now the case where the flow enters the cell through two edges. The
coordinate system (x, y) is redefined and the edges are renumbered in such a way that the flow is
entering the cell i trough the edges k = 2 and 3 and leaves the cell through the edge k = 1. As in
the previous case, the edge k = 1 is parallel to the x-axis. Then it is easy to check that

Un+1/2
i,1 =Un

i

Un+1/2
i,2 =Un

2

Un+1/2
i,3 =Un

3

(B15)

Substituting Equations (B15) and (B5) into Equation (B2) yields

Un+1
i =Un

i − �t

Ai
[(vxn(x)

2 + vyn
(y)
2 )W2(U

n
2 −Un

i ) + (vxn
(x)
3 + vyn

(y)
3 )W3(U

n
3 −Un

i )] (B16)

Dividing Equation (B16) by Un
i leads to

AN = 1 + Cr2

(
Un
2

Un
i

− 1

)
+ Cr3

(
Un
3

Un
i

− 1

)
(B17)

where the Courant numbers Cr2 and Cr3 are defined as

Cr2 = W2�t

Ai
(vxn

(x)
2 + vyn

(y)
2 )

Cr3 = W3�t

Ai
(vxn

(x)
3 + vyn

(y)
3 )

(B18)
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1

j

Cr2

Cr3 R

Figure B3. Location of the amplification factor in the complex plane (bold circle) in the second case.

These Courant numbers represent the ratio of the domains of dependence of the edges k = 2
and 3 to the area of the cell. Equation (B17) can also be rewritten in the form

AN = 1 + Cr2[exp( j�2) − 1] + Cr3[exp( j�3) − 1] (B19)

The location of AN in the complex plane is that of a circle of radius Cr3, the rightmost point R
of which slides on the circle of radius Cr2 tangent to the unit circle (Figure B3). Obviously, AN
remains inside the unit circle provided that the sum Cr2 + Cr3 remains smaller than unity.

B.1.3. Generalization of the stability criterion in the scalar case. The two cases above can be
accounted for by the following criterion: stability is ensured if the total area of the domains of
dependence of all the waves entering the cell i is smaller than the area of the cell i . In other words,
the sum of the Courant numbers of the waves entering the cell i should not exceed unity.

B.2. Generalization to hyperbolic systems of conservation laws

When a hyperbolic system of conservation laws is to be solved, the stability analysis must be
applied to all the waves in the system. As indicated by Equation (27), the conserved variable is a
linear combination of the wave strengths �(p). Each wave strength �(p) is transported at a speed
�(p) in the direction normal to the cell interface. Therefore, in Equation (B1) the variable U should
be replaced with �(p) and the velocity v should be replaced with a vector of norm �(p) normal
to the cell edges. The numerical solution remains stable if all the wave strengths remain stable.
Therefore the stability criterion in the scalar case should hold for the faster of the three waves.
Note that when the flow is subcritical, there is at least one wave entering the cell per cell edge.
In order to avoid tedious testing procedures that would slow down the computation, the following
sufficient condition has been implemented in the present calculations:

[(u2 + v2)1/2 + c](W1 + W2 + W3)�t

Ai
� 1 for all i (B20)

where u and v are the x and y components of the velocity in the cell i , and c= (gh)1/2 is the
propagation speed of the waves in still water in the cell i . Since Equation (B20) overestimates the
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sum of the areas of the domains of dependence of the waves entering the cell i , it gives a sufficient
condition for stability.
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